Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

The Role of Power Electronics in Future Automotive Systems

1998-10-19
98C009
As features in vehicles and their associated loading on the vehicle's power supply increase, the existing 14V power supply system is being pushed to its limits. At some point it will be necessary to provide a complementary higher supply voltage for higher power loads to ensure reliable operation. Industry efforts have been underway to define the next step(s) toward a common architecture. These efforts are currently focused on a dual voltage 14V/42V system with specified voltage limits. A change in the vehicle's power supply voltage and over-voltage specifications have a direct impact on semiconductors. Cost, reliability, available process technology, and packaging are among the areas that are affected. Reducing or eliminating the load dump transient can provide cost reduction, especially for power switching devices. Smart semiconductor switches with integrated diagnostic and protection features provide the potential to replace fuses in the new architecture.
Technical Paper

Cartronic-An Ordering Concept for Future Vehicle Control Systems

1998-10-19
98C011
The continuously increasing performance of modern automotive microelectronics is leading to ever more complex open and closed-loop control functions. Rigid mechanical connections a broken down and electronics applied to make them controllable. Among the examples are camshaft control, or future systems for variable valve-lift control. In addition, the individual systems in the vehicle, such as engine management, transmission-shift control, and ABSR will be networked with one another. The result is a system alliance which communicates through a car-wide web. The major challenge posed by this development in the future, lies in still being able to reliably control the complexity of the system alliance from the point of view of reliability and safety. This means that the suitable sensor and actuator basis, together with an architecture having fixed configuration rulings and matching development methods, are indispensable.
Technical Paper

The Evolution of Powertrain Microcontrollers and Its Impact on Development Processes and Tools

1998-10-19
98C064
As the new generation of RISC powertrain MCUs propagate through the automotive development cycle, there will likely be more difficulty in debugging the ECU reliably and efficiently. Simply stated, there is less support for the development process in the new high-performance single-chip RISC MCUs, which could create critical and costly delays in the development cycle. Additionally, as powertrain MCUs continue to evolve, superscalar or multiple-issue RISC implementations may be used as the central processor. With the capability to issue multiple instructions in one clock cycle, this will only magnify the development support problem. Thus it is essential to address this impending problem with a strategy that both automotive and tools developers can agree. A strategy for development standards is presented in this paper, and a new powertrain MCU development interface standard is proposed.
Technical Paper

Bosch System Solutions for Reduction of CO2 and Emissions

2008-01-09
2008-28-0005
For about 20 years now, legislation for emission standards has become more and more strict. Main current standards are LEVII legislation for US- and EU4 for the European Market. Many emerging markets like e.g. China, India, Russia adopt EU regulations (directly or modified. Mid of 90's discussions began on restrictions and legislation for CO2 emissions. The European commission recently proposed concrete legislation standards for 2012 and 2020. These will have strong influence on the strategies of the Car Manufacturers. Single measures like start stop will be of general interest. But for reaching the fleet average combinations of measures in a single engine configuration will be necessary. Bosch system solutions for engine- and power-train management are available for the whole span of world car segments, ranging from value concepts optimized for emerging markets up to high feature solutions for most stringent requirements world wide.
Technical Paper

Model Based Top Down Process for Automotive E/E-Architecture Development

2008-04-14
2008-01-0284
Model based architecture methods for designing and optimizing electrical and electronic systems of vehicles are becoming more and more popular. However, there is still no standard on the models which are vital for design and description of architectures. Most methods and tools begin with a functional abstraction. The functional elements are mapped to electronic control units [ECU] which are connected through bus systems and supplied with electrical power via clamps. An open, unanswered question is the determination of specific control unit numbers and location in a vehicle platform. To do so, a new model layer is proposed: the “technological model” with so called “technological building blocks”. It sits in-between the “functional model” and the “communication model” and describes the necessary constraints for designing the optimum number and position for electronic control units.
Technical Paper

Investigation into the Formation and Prevention of Internal Diesel Injector Deposits

2008-04-14
2008-01-0926
1 High precision high pressure diesel common rail fuel injection systems play a key role in emission control, fuel consumption and driving performance. Deposits have been observed on internal injector components, for example in the armature assembly, in the slots of the piston and on the nozzle needle. The brownish to colourless deposits can adversely impact driveability and result in non-compliance with the Euro 4 or Euro 5 emission limits. The deposits have been extensively studied to understand their composition and their formation mechanism. Due to the location of these deposits, the influence of combustion gas can be completely ruled out. In fact, their formation can be explained by interactions of certain diesel fuel additives, including di- and mono-fatty acids. This paper describes the methodology used and the data generated that support the proposed mechanisms. Moreover, approaches to avoid such interactions are discussed.
Technical Paper

A New Datadriven Approach to Modeling the Combustion of a Diesel Engine in HCCI Mode

2009-04-20
2009-01-0128
The contribution presents a new data driven modeling approach for diesel HCCI combustion. Input parameters of the combustion model are external actuating variables as for example the start of injection. The model incorporates experimental data of the engine in HCCI mode, in the standard diesel mode and in the transition region between both modes. New disclosed dependencies between characteristic values of the cylinder pressure and the fuel burn rate are used to linearize the combustion model for a given operating point. In this paper the validation of the combustion model is discussed based on dynamic measuring data of the urban part of the NEDC. Finally, the combustion model is integrated in a zero-dimensional diesel engine model.
Technical Paper

Application of ISO 26262 in Distributed Development ISO 26262 in Reality

2009-04-20
2009-01-0758
With its origin in the process industry, the IEC 61508 „Functional safety of electrical/electronic/programmable electronic safety-related systems” is not fully applicable in the automotive industry, forcing the automotive industry to work on an automotive specific adaptation (ISO 26262 “Functional Safety – Road Vehicles”). This ISO 26262 describes an ideal development process that starts from scratch. In reality development activities are often split locally and in time. This can only be handled with a world wide standard as a basis of a common approach, wide enough to give enough freedom to adapt to diverse boundary conditions, but tight enough to hinder local interpretations to be that far, that a complete safety case becomes impossible. Therefore a strict world-wide standard which allows compatible interpretations is mandatory.
Technical Paper

Domain Control Units - the Solution for Future E/E Architectures?

2010-04-12
2010-01-0686
In order to master the increasing complexity of electrical/electronic (E/E) systems in vehicles, E/E architecture design has become an established discipline. The task of the E/E architecture design is to come up with solutions to challenging and often contradictory requirements such as reduced cost and increased flexibility / scalability. One way to optimize the E/E architecture in terms of cost (electronics & wiring harness) is to integrate functions. This can be done by either combining functions from multiple ECUs into a single ECU or by introducing Domain Control Units. Domain Control Units provide the main software functionality for a vehicle domain, while relegating the basic functions of actuator control to connected intelligent actuators. Depending on the different market segments (low price, volume and premium) and the different vehicle domains, the actual usage of Domain Control Units can be quite different and sometimes questionable.
Technical Paper

Obstacle Detection for Power Operated Window-Lift and Sunroof Actuation Systems

2001-03-05
2001-01-0466
In order to prevent injuries due to automatic functions like express- and comfort-opening/closing of power operated window-lift and sunroof systems, mechanisms for detecting obstacles have to be established. The main related regulations are the 74/60/ECC and the FMVSS 118. In this paper we present a unified approach for smart actuators that bases on monitoring the rotational speed of the armature. The advantages have been worked out with the aid of system simulation and proven with tests under realistic and extreme scenarios. The presented results are mainly focused on a sunroof project, which is upcoming for an European car platform in 2001 and is specified to fulfill both regulations simultaneously.
Technical Paper

A Backbone in Automotive Software Development Based on XML and ASAM/MSR

2004-03-08
2004-01-0295
The development of future automotive electronic systems requires new concepts in the software architecture, development methodology and information exchange. At Bosch an XML and MSR based technology is applied to achieve a consistent information handling throughout the entire software development process. This approach enables the tool independent exchange of information and documentation between the involved development partners. This paper presents the software architecture, the specification of software components in XML, the process steps, an example and an exchange scenario with an external development partner.
Technical Paper

Numerical and Experimental Analysis of the 3D Flow-Pattern in Exhaust Gas Sensors

2004-03-08
2004-01-1118
In new exhaust system specifications such as single cylinder balancing, closed coupled catalyst systems, sensor locations close to the engine, turbo applications, fast light off situations and diesel engine applications the dynamic behavior of the lambda sensor becomes more important. This demands a detailed knowledge and modeling of the relevant parameters. In former analysis of exhaust gas sensors the main focus has been the electrochemical processes in the sensor. The influence of flow structure and protection tubes had lower priority. In this paper we present the numerical and experimental analysis of cold air flowing in a pipe including mounted exhaust sensors. Two double-protection tubes from the Robert Bosch GmbH have been examined named (a) and (b). The predicted results have been compared with values measured with Laser Doppler Anemometry (LDA). The flow pattern in the protection tube type (a) depends on the geometric configuration of the sensor element and the tubes.
Technical Paper

Advanced Emission and Fuel Economy Concept Using Combined Injection of Gasoline and Hydrogen in SI-Engines

2004-03-08
2004-01-1270
In order to meet future requirements for emission reduction and fuel economy a variety of concepts are available for gasoline engines. In the recent past new pathways have been found using alternative fuels and fuel combinations to establish cost optimized solutions. The presented concept for a SI-engine consists of combined injection of gasoline and hydrogen. A hydrogen enriched gas mixture is being injected additionally to gasoline into the engine manifold. The gas composition represents the output of an onboard gasoline reformer. The simulations and measurements show substantial benefits to improve the combustion process resulting in reduced cold start and warm up emissions and optimized part load operation. The replacement of gasoline by hydrogen-rich gas during engine start leads to zero hydrocarbons in the exhaust gas.
Technical Paper

Speech-Controlled Wearable Computers for Automotive Shop Workers

2001-03-05
2001-01-0606
Vehicle inspection in repair shops is often still based on paper forms. Information Technology (IT) does not yet support the entire inspection process. In this paper, we introduce a small wearable IT device that is controlled by speech and enables service technicians to wirelessly access relevant data and to perform on-site communication. Users can carry this device in a pocket and use a small headset to enter speech and receive audio feedback. This system provides a completely speech-enabled functionality and thus offers a hands-free operation. After showing the applicability of wearable computers in this environment, we developed a proprietary hardware system consisting of a thin-client connected via a Digital Enhanced Cordless Telecommunications (DECT) link to a standard Personal Computer (PC) that runs a speech engine and hosts a database. Several field tests in garages helped us during the evolution of our prototypes where service technicians critiqued the prototypes.
Technical Paper

Information Technology - A Challenge for Automotive Electronics

2001-03-05
2001-01-0029
In the automotive industry, a steadily growing number of mono-functional electronic control units (ECUs) with increasing complexity on the one hand and restrictive requirements for power consumption and mounting space on the other hand are forcing changes in car electronics. This tendency is enforced by increasing requirements on security, comfort, fuel consumption and emission. In luxury cars, we are now at up to 80 more or less independent electronic units with low potential for synergies between functions (pan-functional services). The actual assembly of electronic units is certainly easily expandable, has very low error propagation but it also involves lots of logistic and bulky cabling with unwanted weight as well as extensive space and power consumption. If trends are properly interpreted, synergies between functions for more comfort, additional safety and security as well as minor air pollution are required in the future at least at unchanged costs in the vehicle's electronics.
Technical Paper

A Case Study in Applying a Product Line Approach for Car Periphery Supervision Systems

2001-03-05
2001-01-0025
Car Periphery Supervision (CPS) systems comprise a family of automotive systems that are based on sensors installed around the vehicle to monitor its environment. The measurement and evaluation of sensor data enables the realization of several kinds of higher level applications such as parking assistance or blind spot detection. Although a lot of similarity can be identified among CPS applications, these systems are traditionally built separately. Usually, each single system is built with its own electronic control unit, and it is likely that the application software is bound to the controller's hardware. Current systems engineering therefore often leads to a large number of inflexible, dedicated systems in the automobile that together consume a large amount of power, weight, and installation space and produce high manufacturing and maintenance costs.
Technical Paper

Preparing for CARTRONIC - Interface and New Strategies for Torque Coordination and Conversion in a Spark Ignition Engine-Management System

2001-03-05
2001-01-0268
A major trend in modern vehicle control is the increase of complexity and interaction of formerly autonomous systems. In order to manage the resulting network of more and more integrated (sub)systems Bosch has developed an open architecture called CARTRONIC for structuring the entire vehicle control system. Structuring the system in functionally independent components improves modular software development and allows the integration of new elements such as integrated starter/generator and the implementation of advanced control concepts as drive train management. This approach leads to an open structure on a high level for the design of advanced vehicle control systems. The paper describes the integration of the spark-ignition (SI) engine management system (EMS) into a CARTRONIC conform vehicle coordination requiring a new standard interface between the vehicle coordination and the EMS level.
Technical Paper

Time Triggered CAN (TTCAN)

2001-03-05
2001-01-0073
Connecting microcontrollers, sensors and actuators by several communication systems is state of the art within the electronic architectures of modern vehicles. The communication among these components is widely based on the event triggered communication on the Controller-Area-Network (CAN) protocol. The arbitrating mechanism of this protocol ensures that all messages are transferred according to the priority of their identifiers and that the message with the highest priority will not be disturbed. In the future some mission critical subnetworks within the upcoming generations of vehicle systems, e.g. x-by-wire systems (xbws), will additionally require deterministic behavior in communication during service. Even at maximum bus load, the transmission of all safety related messages must be guaranteed. Moreover it must be possible to determine the point of time when the message will be transmitted with high precision.
Technical Paper

Integration of a Structuring Concept for Vehicle Control Systems into the Software Development Process using UML Modelling Methods

2001-03-05
2001-01-0066
The demand for more security, economy, and comfort as well as for a reduced environmental impact increases the importance of electronic components for vehicles. The development of such systems is determined by the requirement of an improved functionality and co-requisite the demand for limited costs. In order to fulfil these demands and taking into consideration the increase of complexity and the melting together to a car wide web, Bosch is developing a structuring concept called CARTRONIC®. This concept is supposed to be open and neutral regarding automotive manufactures and suppliers. The analysis of vehicle control systems via this method is based on formal rules for structuring and modelling. The function-related aspect of CARTRONIC® was represented already at the SAE'98 World Congress. Furthermore the safety-related feature was introduced in more detail at the SAE'99 World Congress. The result of the analysis is an object structure of logical components with defined interfaces.
Technical Paper

Analysis of Flow Patterns inside an Autothermal Gasoline Reformer

2001-05-07
2001-01-1917
The present paper concentrates on the option of catalytic autothermal reforming of gasoline for fuel cell applications. Major parameters of this process are the “Steam to Carbon Ratio” S/C and the air to fuel ratio λ. Computations assuming thermodynamic equilibrium in the autothermal reactor outlet (ATR) were carried out to attain information about their proper choice, as failure in adjusting the parameters within narrow limits has severe consequences on the reforming process. In order to quantify velocity distribution just ahead the catalyst and to evaluate mixing uniformity we designed an ATR featuring an optical access: Thus flow visualization using PIV (Particle Image Velocimetry) and LIF (Laser Induced Fluorescence) technique is possible. Preliminary PIV-results are presented and compared with CFD computations (Computational Fluid D ynamics).
X